Revisiting Gaussian Process Dynamical Models
نویسندگان
چکیده
The recently proposed Gaussian process dynamical models (GPDMs) have been successfully applied to time series modeling. There are four learning algorithms for GPDMs: maximizing a posterior (MAP), fixing the kernel hyperparameters ᾱ (Fix.ᾱ), balanced GPDM (B-GPDM) and twostage MAP (T.MAP), which are designed for model training with complete data. When data are incomplete, GPDMs reconstruct the missing data using a function of the latent variables before parameter updates, which, however, may cause cumulative errors. In this paper, we present four new algorithms (MAP, Fix.ᾱ, B-GPDM and T.MAP) for learning GPDMs with incomplete training data and a new conditional model (CM) for recovering incomplete test data. Our methods adopt the Bayesian framework and can fully and properly use the partially observed data. We conduct experiments on incomplete motion capture data (walk, run, swing and multiple-walker) and make comparisons with the existing four algorithms as well as kNN, spline interpolation and VGPDS. Our methods perform much better on both training with incomplete data and recovering incomplete test data.
منابع مشابه
Coupling Gaussian Process Dynamical Models with Product-of-Experts Kernels
We describe a new probabilistic model for learning of coupled dynamical systems in latent state spaces. The coupling is achieved by combining predictions from several Gaussian process dynamical models in a product-of-experts fashion. Our approach facilitates modulation of coupling strengths without the need for computationally expensive re-learning of the dynamical models. We demonstrate the ef...
متن کاملThe Variational Coupled Gaussian Process Dynamical Model
We present a full variational treatment of the Coupled Gaussian Process Dynamical Model (CGPDM), which is a non-parametric, modular dynamical movement primitive model. Our work builds on similar developments in Gaussian state-space models, but we obviate the need for sampling, which results in a fast deterministic approximation for the posterior of latent states. We illustrate the performance o...
متن کاملGaussian Process Dynamical Models
This paper introduces Gaussian Process Dynamical Models (GPDM) for nonlinear time series analysis. A GPDM comprises a low-dimensional latent space with associated dynamics, and a map from the latent space to an observation space. We marginalize out the model parameters in closed-form, which amounts to using Gaussian Process (GP) priors for both the dynamics and the observation mappings. This re...
متن کاملGaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling
Time series data of high dimensions are frequently encountered in fields like robotics, computer vision, economics and motion capture. In this survey paper we look first at Gaussian Process Latent Variable Model (GPLVM) which is a probabilistic nonlinear dimensionality reduction method. Further we discuss Gaussian Process Dynamical Model (GPDMs) which are based GPLVM. GPDM is a probabilistic ap...
متن کاملEvaluating and revisiting the public government: a policy feedback perspective
Existing models of quality evaluation in public sector are mainly derived from the approaches within private sector. These models which represented by the New Public Management (NPM) paradigm, don&rsquot reflect the fundamental values of public administration, which are the very essence of the discipline and contrasting it from private sector. These core values, such as democratic citizenship, ...
متن کامل